Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
The Thai Journal of Pharmaceutical Sciences ; 46(3):300-306, 2022.
Article in English | CAB Abstracts | ID: covidwho-2315819

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has been affecting the swine industry, especially in suckling pigs in with a high mortality rate. Among all the strategies to overcome PEDV, boosting mucosal immunity in pig intestine via oral administration appears to be more efficient than other routes. However, there are biological obstacles such as acidic environment that could damage biologics, a product from organisms often used for PEDV treatment. The plant-derived 2C10 monoclonal antibody (mAb) from Nicotiana benthamiana produced by transient expression was revealed as one of the potential candidates against PEDV through oral delivery. Herein, we demonstrated the calcium-alginate microencapsulation system to protect the 2C10 mAb from the harsh condition in the stomach and to be released the 2C10 mAb when arriving in the intestine. The pH-responsive encapsulated 2C10 mAb microbeads were constructed from the calcium-alginate system. The microbeads were well-tolerated under the acidic environment of simulated gastric fluid (SGF) and were digested under the alkaline condition of simulated intestinal fluid (SIF). The encapsulated 2C10 mAb in the SPF-treated microbeads exhibited high virus neutralization efficiency in Vero cells when compared to the unencapsulated 2C10 mAb treated by SPF that cannot neutralize the virus. For these reasons, calcium-alginate microencapsulation system is an attractive platform to be considered as a candidate for the next generation of oral vaccine development.

2.
Front Plant Sci ; 14: 1138089, 2023.
Article in English | MEDLINE | ID: covidwho-2288147

ABSTRACT

Plants have recently received much attention as a means of producing recombinant proteins because they are easy to grow at a low cost and at a large scale. Although many plant protein expression systems have been developed, there remains a need for improved systems that deliver high yields of recombinant proteins. Transcription of the recombinant gene is a key step in increasing the yield of recombinant proteins. However, revealed strong promoters, terminators, and transcription factors that have been identified do not necessarily lead to high level production of recombinant proteins. Thus, in this study, a robust expression system was designed to produce high levels of recombinant protein consisting of a novel hybrid promoter, FM'M-UD, coupled with an artificial terminator, 3PRt. FM'M-UD contained fragments from three viral promoters (the promoters of Mirabilis mosaic caulimovirus (MMV) full-length transcript, the MMV subgenomic transcript, and figwort mosaic virus subgenomic transcript) and two types of cis-acting elements (four GAL4 binding sites and two zinc finger binding sites). The artificial terminator, 3PRt, consisted of the PINII and 35S terminators plus RB7, a matrix attachment region. The FM'M-UD promoter increased protein levels of reporters GFP, RBD : SD1 (part of S protein from SARS-CoV-2), and human interleukin-6 (hIL6) by 4-6-fold, 2-fold, and 6-fold, respectively, relative to those of the same reporters driven by the CaMV 35S promoter. Furthermore, when the FM'M-UD/3PRt expression cassette was expressed together with GAL4/TAC3d2, an artificial transcription factor that bound the GAL4 binding sites in FM'M-UD, levels of hIL6 increased by 10.7-fold, relative to those obtained from the CaMV 35S promoter plus the RD29B terminator. Thus, this novel expression system led to the production of a large amount of recombinant protein in plants.

3.
Vaccine ; 41(17): 2781-2792, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2276426

ABSTRACT

Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine. In this study, we report a preclinical evaluation of the immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052 (TLR7/8 agonist)-Alum adjuvant. This vaccine formulation, named Baiya SARS-CoV-2 Vax 2, induced significant levels of RBD-specific IgG and neutralizing antibody responses in mice. A viral challenge study using humanized K18-hACE2 mice has shown that animals vaccinated with two doses of Baiya SARS-CoV-2 Vax 2 established immune protection against SARS-CoV-2. A study in nonhuman primates (cynomolgus monkeys) indicated that immunization with two doses of Baiya SARS-CoV-2 Vax 2 was safe, well tolerated, and induced neutralizing antibodies against the prototype virus and other viral variants (Alpha, Beta, Gamma, Delta, and Omicron subvariants). The toxicity of Baiya SARS-CoV-2 Vax 2 was further investigated in Jcl:SD rats, which demonstrated that a single dose and repeated doses of Baiya SARS-CoV-2 Vax 2 were well tolerated and no mortality or unanticipated findings were observed. Overall, these preclinical findings support further clinical development of Baiya SARS-CoV-2 Vax 2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Rats , Rats, Sprague-Dawley , COVID-19/prevention & control , Aluminum Hydroxide , Adjuvants, Immunologic , Antibodies, Neutralizing , Macaca fascicularis , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Immunogenicity, Vaccine
4.
Plant Biotechnol J ; 21(6): 1176-1190, 2023 06.
Article in English | MEDLINE | ID: covidwho-2244047

ABSTRACT

The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking ß-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of ß-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.


Subject(s)
COVID-19 , Hepatitis B virus , Humans , Animals , Mice , Hepatitis B virus/genetics , Glycosylation , Tobacco/genetics , CRISPR-Cas Systems/genetics , COVID-19/genetics , SARS-CoV-2 , Hepatitis B Vaccines/genetics , Antibodies, Neutralizing , Hepatitis B Surface Antigens/genetics
5.
Pharmaceutical Journal ; 308(7959), 2022.
Article in English | EMBASE | ID: covidwho-2228339
6.
Biomater Transl ; 2(1): 43-49, 2021.
Article in English | MEDLINE | ID: covidwho-2201125

ABSTRACT

The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread rapidly causing a severe global health burden. The standard COVID-19 diagnosis relies heavily on molecular tests to detect viral RNA in patient samples; however, this method is costly, requires highly-equipped laboratories, multiple reagents, skilled laboratory technicians, and takes 3-6 hours to complete. To overcome these limitations, we developed a plant-based production platform for the SARS-CoV-2 receptor-binding domain as an economical source of detection reagents for a lateral-flow immunoassay strip (LFIA) which is suitable for detection of IgM/IgG antibodies in human samples. Further, we validated the plant-produced SARS-CoV-2 receptor-binding domain-based LFIA as a useful diagnostic tool for COVID-19. A total of 51 confirmed COVID-19 serum samples were tested using the LFIA, and the obtained results were consistent with those from polymerase chain reaction assays, while providing sensitivity and specificity of 94.1% and 98%, respectively. The developed LFIA is rapid, scalable, user-friendly, and relatively inexpensive with a simple test procedure, making it useful for the routine monitoring of COVID-19 in clinical settings. This study was approved on March 19, 2020 by the Ethics Committee of the Faculty of Medicine, Chulalongkorn University (COA No. 354/2020 and IRB No. 236/63).

7.
Clin Exp Vaccine Res ; 11(3): 285-289, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2145131

ABSTRACT

Various vaccines have been developed to fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic. However, new variants of SARS-CoV-2 undermine the effort to fight SARS-CoV-2. Here, we produced S proteins harboring the receptor-binding domain (RBD) of the Omicron variant in plants. Plant-produced S proteins together with adjuvant CIA09A triggered strong immune responses in mice. Antibodies in serum inhibited interaction of recombinant human angiotensin-converting enzyme 2 with RBD of the Omicron variant, but not RBD of other variants. These results suggest that antibodies induced by RBD of the Omicron variant are highly specific for the Omicron RBD, but not for that of other variants.

8.
Plant Biotechnol J ; 20(12): 2298-2312, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2019572

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mice , Animals , Humans , Tobacco/genetics , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , Mice, Inbred BALB C , Antibodies, Neutralizing , Immunity , Mammals
9.
Drug Development and Delivery ; 22(4):18-23, 2022.
Article in English | Scopus | ID: covidwho-2012508
10.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1987901

ABSTRACT

The emergence of the SARS-CoV-2 coronavirus pandemic in China in late 2019 led to the fast development of efficient therapeutics. Of the major structural proteins encoded by the SARS-CoV-2 genome, the SPIKE (S) protein has attracted considerable research interest because of the central role it plays in virus entry into host cells. Therefore, to date, most immunization strategies aim at inducing neutralizing antibodies against the surface viral S protein. The SARS-CoV-2 S protein is heavily glycosylated with 22 predicted N-glycosylation consensus sites as well as numerous mucin-type O-glycosylation sites. As a consequence, O- and N-glycosylations of this viral protein have received particular attention. Glycans N-linked to the S protein are mainly exposed at the surface and form a shield-masking specific epitope to escape the virus antigenic recognition. In this work, the N-glycosylation status of the S protein within virus-like particles (VLPs) produced in Nicotiana benthamiana (N. benthamiana) was investigated using a glycoproteomic approach. We show that 20 among the 22 predicted N-glycosylation sites are dominated by complex plant N-glycans and one carries oligomannoses. This suggests that the SARS-CoV-2 S protein produced in N. benthamiana adopts an overall 3D structure similar to that of recombinant homologues produced in mammalian cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Glycosylation , Humans , Mammals/metabolism , Polysaccharides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Tobacco/genetics , Tobacco/metabolism , Virion
11.
Plant Biotechnol J ; 20(7): 1363-1372, 2022 07.
Article in English | MEDLINE | ID: covidwho-1759237

ABSTRACT

We have investigated the use of transient expression to produce virus-like particles (VLPs) of severe acute respiratory syndrome coronavirus 2, the causative agent of COVID-19, in Nicotiana benthamiana. Expression of a native form of the spike (S) protein, either alone or in combination with the envelope (E) and membrane (M) proteins, all of which were directed to the plant membranes via their native sequences, was assessed. The full-length S protein, together with degradation products, could be detected in total protein extracts from infiltrated leaves in both cases. Particles with a characteristic 'crown-shaped' or 'spiky' structure could be purified by density gradient centrifugation. Enzyme-linked immunosorbent assays using anti-S antibodies showed that threefold higher levels of VLPs containing the full-length S protein were obtained by infiltration with S alone, compared to co-infiltration of S with M and E. The S protein within the VLPs could be cleaved by furin in vitro and the particles showed reactivity with serum from recovering COVID-19 patients, but not with human serum taken before the pandemic. These studies show that the native S protein expressed in plants has biological properties similar to those of the parent virus. We show that the approach undertaken is suitable for the production of VLPs from emerging strains and we anticipate that the material will be suitable for functional studies of the S protein, including the assessment of the effects of specific mutations. As the plant-made material is noninfectious, it does not have to be handled under conditions of high containment.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
Biologia Plantarum ; 65:351-358, 2021.
Article in English | Web of Science | ID: covidwho-1614597

ABSTRACT

Atractylodes lancea (Thunb.) DC has been used widely as a medicinal herb for centuries and is now being used to treat COVID-19 pneumonia. Terpenoids are thought to be its main pharmacologically active constituents. However, their biosynthesis remains uncharacterized in this species. In this study, the terpene synthase gene AlTPS1 was cloned and functionally characterized. We found that AlTPS1 was a bifunctional enzyme that catalyzed the conversion of farnesyl diphosphate to nerolidol and geranyl diphosphate to linalool in vitro. However, it functioned only in the nerolidol production in vivo by transient expression of the AlTPS1 gene in Nicotiana benthamiana leaves maybe due to subcellular compartmentalization of the AlTPS1 in the cytosol. Furthermore, AlTPS1 was highly expressed in leaves, considered to be the sites of nerolidol synthesis. This study is the first in which the cloning and expression of the AlTPS1 gene from A. lancea were analyzed, and it has provided new insights into terpene biosynthesis in A. lancea.

13.
Front Plant Sci ; 12: 742875, 2021.
Article in English | MEDLINE | ID: covidwho-1595699

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19. In this study, we report a high-level production (about ∼0.75 g/kg leaf biomass) of human soluble (truncated) ACE2 in the Nicotiana benthamiana plant. After the Ni-NTA single-step, the purification yields of recombinant plant produced ACE2 protein in glycosylated and deglycosylated forms calculated as ∼0.4 and 0.5 g/kg leaf biomass, respectively. The plant produced recombinant human soluble ACE2s successfully bind to the SARS-CoV-2 spike protein. Importantly, both deglycosylated and glycosylated forms of ACE2 are stable at increased temperatures for extended periods of time and demonstrated strong anti-SARS-CoV-2 activities in vitro. The half maximal inhibitory concentration (IC50) values of glycosylated ACE2 (gACE2) and deglycosylated ACE2 (dACE2) were ∼1.0 and 8.48 µg/ml, respectively, for the pre-entry infection, when incubated with 100TCID50 of SARS-CoV-2. Therefore, plant produced soluble ACE2s are promising cost-effective and safe candidates as a potential therapeutic tool in the treatment of patients with COVID-19.

14.
Science ; 374(6574):1418-1418, 2021.
Article in English | Academic Search Complete | ID: covidwho-1589384

ABSTRACT

The article talks about production of a new vaccine which mimics Covid-19 virus particle with spike proteins from a genetically engineered plant, a tobacco cousin called Nicotiana benthamiana produced by Medicago.

15.
Vaccines (Basel) ; 9(9)2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1390809

ABSTRACT

The current 15-month coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2 has accounted for 3.77 million deaths and enormous worldwide social and economic losses. A high volume of vaccine production is urgently required to eliminate COVID-19. Inexpensive and robust production platforms will improve the distribution of vaccines to resource-limited countries. Plant species offer such platforms, particularly through the production of recombinant proteins to serve as immunogens. To achieve this goal, here we expressed the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein in the glycoengineered-tobacco plant Nicotiana benthamiana to provide a candidate subunit vaccine. This recombinant RBD elicited humoral immunity in mice via induction of highly neutralizing antibodies. These findings provide a strong foundation to further advance the development of plant-expressed RBD antigens for use as an effective, safe, and inexpensive SARS-CoV-2 vaccine. Moreover, our study further highlights the utility of plant species for vaccine development.

16.
Methods Enzymol ; 660: 239-263, 2021.
Article in English | MEDLINE | ID: covidwho-1283203

ABSTRACT

Monoclonal antibodies (mAbs) hold great promise for treating diseases ranging from cancer to infectious disease. Manufacture of mAbs is challenging, expensive, and time-consuming using mammalian systems. We describe detailed methods used by Kentucky BioProcessing (KBP), a subsidiary of British American Tobacco, for producing high quality mAbs in a Nicotiana benthamiana host. Using this process, mAbs that meet GMP standards can be produced in as little as 10 days. Guidance for using individual plants, as well as detailed methods for large-scale production, are described. These procedures enable flexible, robust, and consistent production of research and therapeutic mAbs.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents, Immunological , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Mammals , Manufacturing and Industrial Facilities , Plants , Plants, Genetically Modified , Tobacco/genetics
17.
Front Plant Sci ; 12: 682953, 2021.
Article in English | MEDLINE | ID: covidwho-1247902

ABSTRACT

The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health and economy. Despite the substantial efforts, only few vaccines are currently approved and some are in the different stages of clinical trials. As the disease rapidly spreads, an affordable and effective vaccine is urgently needed. In this study, we investigated the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2 in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the crude extract by using protein A affinity column chromatography. Two intramuscular administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant have elicited high neutralization titers in immunized mice and cynomolgus monkeys. Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-linked immunospot assay. Altogether, our results demonstrated that the plant-produced SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate against SARS-CoV-2. To our knowledge, this is the first report demonstrating the immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-human primates.

18.
Front Microbiol ; 12: 643275, 2021.
Article in English | MEDLINE | ID: covidwho-1241180

ABSTRACT

A novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in China in December 2019, causing an ongoing, rapidly spreading global pandemic. Worldwide, vaccination is now expected to provide containment of the novel virus, resulting in an antibody-mediated immunity. To verify this, serological antibody assays qualitatively as well as quantitatively depicting the amount of generated antibodies are of great importance. Currently available test methods are either laboratory based or do not have the ability to indicate an estimation about the immune response. To overcome this, a novel and rapid serological magnetic immunodetection (MID) point-of-care (PoC) assay was developed, with sensitivity and specificity comparable to laboratory-based DiaSorin Liaison SARS-CoV-2 S1/S2 IgG assay. To specifically enrich human antibodies against SARS-CoV-2 in immunofiltration columns (IFCs) from patient sera, a SARS-CoV-2 S1 antigen was transiently produced in plants, purified and immobilized on the IFC. Then, an IgG-specific secondary antibody could bind to the retained antibodies, which was finally labeled using superparamagnetic nanoparticles. Based on frequency magnetic mixing technology (FMMD), the magnetic particles enriched in IFC were detected using a portable FMMD device. The obtained measurement signal correlates with the amount of SARS-CoV-2-specific antibodies in the sera, which could be demonstrated by titer determination. In this study, a MID-based assay could be developed, giving qualitative as well as semiquantitative results of SARS-CoV-2-specific antibody levels in patient's sera within 21 min of assay time with a sensitivity of 97% and a specificity of 92%, based on the analysis of 170 sera from hospitalized patients that were tested using an Food and Drug Administration (FDA)-certified chemiluminescence assay.

19.
Front Plant Sci ; 11: 604663, 2020.
Article in English | MEDLINE | ID: covidwho-1054993

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease (COVID-19) which has recently emerged as a potential threat to global public health. SARS-CoV-2 is the third known human coronavirus that has huge impact on the human population after SARS-CoV and MERS-CoV. Although some vaccines and therapeutic drugs are currently in clinical trials, none of them are approved for commercial use yet. As with SARS-CoV, SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as the cell entry receptor to enter into the host cell. In this study, we have transiently produced human ACE2 fused with the Fc region of human IgG1 in Nicotiana benthamiana and the in vitro neutralization efficacy of the plant-produced ACE2-Fc fusion protein was assessed. The recombinant ACE2-Fc fusion protein was expressed in N. benthamiana at 100 µg/g leaf fresh weight on day 6 post-infiltration. The recombinant fusion protein showed potent binding to receptor binding domain (RBD) of SARS-CoV-2. Importantly, the plant-produced fusion protein exhibited potent anti-SARS-CoV-2 activity in vitro. Treatment with ACE2-Fc fusion protein after viral infection dramatically inhibit SARS-CoV-2 infectivity in Vero cells with an IC50 value of 0.84 µg/ml. Moreover, treatment with ACE2-Fc fusion protein at the pre-entry stage suppressed SARS-CoV-2 infection with an IC50 of 94.66 µg/ml. These findings put a spotlight on the plant-produced ACE2-Fc fusion protein as a potential therapeutic candidate against SARS-CoV-2.

20.
Front Plant Sci ; 11: 612781, 2020.
Article in English | MEDLINE | ID: covidwho-1021906

ABSTRACT

The current CoVid-19 crisis is revealing the strengths and the weaknesses of the world's capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions. In this work, we explore how, in a context of rapid exchange of scientific information, plant biofactories can serve as a rapid and easily adaptable solution for local manufacturing of bioreagents, more specifically recombinant antibodies. For this purpose, we tested our ability to produce, in the framework of an academic lab and in a matter of weeks, milligram amounts of six different recombinant monoclonal antibodies against SARS-CoV-2 in Nicotiana benthamiana. For the design of the antibodies, we took advantage, among other data sources, of the DNA sequence information made rapidly available by other groups in preprint publications. mAbs were engineered as single-chain fragments fused to a human gamma Fc and transiently expressed using a viral vector. In parallel, we also produced the recombinant SARS-CoV-2 N protein and the receptor binding domain (RBD) of the Spike protein in planta and used them to test the binding specificity of the recombinant mAbs. Finally, for two of the antibodies, we assayed a simple scale-up production protocol based on the extraction of apoplastic fluid. Our results indicate that gram amounts of anti-SARS-CoV-2 antibodies could be easily produced in little more than 6 weeks in repurposed greenhouses with little infrastructure requirements using N. benthamiana as production platform. Similar procedures could be easily deployed to produce diagnostic reagents and, eventually, could be adapted for rapid therapeutic responses.

SELECTION OF CITATIONS
SEARCH DETAIL